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Abstract

A theoretical and experimental study of the response of a damaged Euler–Bernoulli beam traversed by a
moving mass is presented. Damage is modelled through rotational springs whose compliance is evaluated
using linear elastic fracture mechanics. The analytical solution is based on the series expansion of the
unknown deflection in a basis of the beam eigenfunctions. The latter are calculated using the transfer matrix
method, taking into account the effective mass distribution of the beam. The convective acceleration terms,
often omitted in similar studies, are considered here for a correct evaluation of the beam–moving mass
interaction force.

The analytical solution is then validated through a series of experimental tests. An adequate small-scale
model is designed to satisfy both static and dynamic similitude with a prototype bridge structure, thus
providing data of practical engineering relevance. It is shown that experimental results are in good
agreement with the theoretical predictions. Moreover, it is observed that the percentages of variation in the
beam response due to damage are, generally, larger than those induced in the structural natural frequencies;
that is, an increase in structural damage sensitivity is noticed under the effect of a moving interacting load.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

For more than a century [1] the analysis of continuous elastic systems subjected to moving sub-
systems has been a subject of interest in many fields, from structural to mechanical to aerospace
engineering. However, it is especially in bridge engineering that this problem finds its widest field
of application. Indeed, the presence of structural damage, either due to environmental loads
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(corrosion, material loss, support deterioration) or to stress concentrations (cracks, joint failures),
combined with the dynamic nature of the excitation can dramatically reduce the useful life of the
bridge.
In order to recognize when the structure is approaching an overstressed condition, it is

necessary to understand the complexity of the dynamic interaction between the continuous system
(bridge) and the sub-system (vehicle) moving on it. A complete analysis must also take into
account the presence of existing structural damage.
For the undamaged case, a large number of theoretical investigations have been based on use of

a beam model; despite its simplicity, it provides useful information for investigating structural
response. The complexity of the solution depends on the moving vehicle model. For the simplest
moving force model, closed form solutions are available primarily based on the series expansion
of the unknown displacement function [2–4]. On the other hand, the so-called moving mass
problem, where the inertia of the moving sub-system is taken into account, does not have a closed
form solution. Thus, proposed approximate solutions have been based on series expansions [5,6],
iterative solution of integral equation [7], and finite element discretization [8,9]. A more complex
and realistic model is represented by a moving oscillator [10–12], from which more advanced
vehicle models originate [13–16].
Interest in the dynamic analysis of damaged beams has been ongoing for the past 40 years,

particularly because of its relationship to the automatic monitoring of structural integrity. A
thorough literature survey can be found in Ref. [17].
Basically, damage models presented in the literature can be cast into two categories. The most

common, and widely used to study cracked beams, is the so-called ‘‘rotational spring model’’, in
which the effect of structural damage is modelled through a local compliance which quantifies, in
a macroscopic way, the relation between the applied load and the strain surrounding the crack
area [18–20]. In the most general case a 6� 6 local flexibility matrix is introduced whose elements
are evaluated using linear elastic fracture mechanics theory [21,22].
Recently, starting from the work of Christides and Barr [23], new continuous vibration theories

for cracked beams [24–26] have been developed employing the so-called crack disturbance

functions that modify the stress, strain, and displacement fields in the entire damaged element.
These represent a more advanced and accurate damage model; however, experimental tests and
numerical simulations [25,26] have shown that the rotational spring model, despite its simplified
assumptions (localized damage effect), provides a good approximation of the beam response.
In spite of the large number of publications focused on the two fields, moving loads on

continuous elastic systems and vibration of damaged structures, to the authors’ knowledge only
three [27–29] have addressed these two topics simultaneously. In Parhi and Behera [27], the
problem of a mass moving on cantilever beam with a single damage location is investigated. In
Ref. [28] a procedure is presented for determining stress intensity factors for single and double
edge cracks in a simply supported undamped Euler–Bernoulli beam under a moving force; while
in Ref. [29] an iterative procedure is proposed for the analysis of the moving mass case. In these
papers linear elastic fracture mechanics is used to calculate the compliance of the equivalent
rotational spring damage model. However, a number of undocumented assumptions are made,
either in the structural model (lumped masses [28,29]) or in the evaluation of the beam–moving
mass interaction force (convective acceleration terms are omitted [27]) while the convergence
conditions for the iterative scheme in Ref. [29] are not clearly stated. Moreover, the experimental
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data in Ref. [27], due to the selected range of variation of parameters governing the problem, do
not provide information of significant engineering relevance.
In light of the potential developments in the field of structural health monitoring and damage

identification in bridge structures, this problem has become of fundamental importance. Indeed,
enormous economic advantages could arise from the use of simple moving load tests for integrity
checks in highway bridges.
The first objective of this work, treated in Section 2, is to provide an analytical tool for the

analysis of a damaged Euler–Bernoulli beam under a moving mass, with an arbitrary number of
damaged sections, and generic boundary conditions. A rotational spring damage model is used
(Section 3). The formulation of the problem, starting from the equation of motion of the single
element of the discretized beam, is given in a compact mathematical form, adaptable to computer
implementation. Both the structural model and the beam–moving mass interaction force are
modelled in the most accurate way by taking into account the effective structural mass
distribution and the convective acceleration terms.
Though relatively simple, this model can be used to study the behaviour of a damaged bridge

structure subjected to moving vehicles.
Indeed, in the second part of this work (Section 4), an experimental investigation of a small-

scale model of a prototype bridge structure is presented. The objective of this section is not only to
validate the analytical tools developed, but also to provide data of practical engineering relevance
for analyzing the structural damage sensitivity under a moving mass.

2. Theory

2.1. Formulation of the problem

The given beam is discretized into N segments of constant linear mass density r; bending
stiffness EI (undamaged beam stiffness), and length li (Fig. 1). Damping is not considered. The
segments are connected together through rotational springs (damaged sections) whose
compliances are denoted by ci: The equation of motion for the ith segment can then be written as

r .wðxi; tÞ þ EI@4wðxi; tÞ=@x4 ¼ fiðtÞW½xiðtÞ; 0; li�d½xi � xiðtÞ�; 0oxioli; ð1Þ

where wðxi; tÞ is the unknown deflection, overdots denote derivatives with respect to the time
variable, fiðtÞ is the beam–moving mass interaction force, Wð	Þ is a window function, dð	Þ is the
Dirac delta function, and xiðtÞ denotes the location of the moving load at time t (in the local
co-ordinate system). The window function is defined as

W½xiðtÞ; 0; li� ¼ U½xiðtÞ; 0� �U½xiðtÞ; li�; ð2Þ
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Fig. 1. Beam with rotational springs representing damaged section traversed by a moving mass.
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in which Uð	Þ is the unit step function; thus, the right-hand of Eq. (1) is different from zero
8t : 0pxiðtÞpli (the mass transits over the ith segment).
The expression for fiðtÞ depends on the analytical model used to represent the moving load; in

the case of a moving mass model it is given by

fiðtÞ ¼ mfg � T½wðxi; tÞ�jxi¼xiðtÞg; ð3Þ

where m is the moving mass, g is the acceleration due to gravity, and T½	� is a linear differential
operator for the acceleration of the mass

T½	� ¼
@2

@t2
þ 2’x

@2

@x@t
þ ’x2

@2

@x2
þ .x

@

@x

� �
½	�: ð4Þ

In this expression ’x and .x are the speed and acceleration of the moving mass, respectively. In a
similar study of a single damaged beam under a moving mass [27] the convective terms in Eq. (4)
were omitted ðT½	�D@2½	�=@t2Þ; however, this approximation is not generally reasonable unless the
mass moves at very low speed, and it may lead to significant errors in the evaluation of the system
response.
From Eq. (3) it is apparent that the interaction force depends on the beam response itself;

moreover, using Eqs. (3)–(4) in Eq. (1), it is straightforward to show that the governing partial
differential equation is characterized by time-varying singular coefficients.
Besides the initial conditions, w0ðxÞ ¼ wðx; 0Þ and ’w0ðxÞ ¼ ’wðx; 0Þ for 0pxpl and the

external boundary conditions, the interior compatibility and equilibrium relationships
must be taken into account in the formulation of the problem; for the case under study they
are given by

wið0; tÞ ¼ wi�1ðli�1; tÞ; ð5aÞ

Wið0; tÞ ¼ Wi�1ðli�1; tÞ þ ci�1Mi�1ðli�1; tÞ; ð5bÞ

Mið0; tÞ ¼ Mi�1ðli�1; tÞ; ð5cÞ

Við0; tÞ ¼ Vi�1ðli�1; tÞ for i ¼ 2; 3;y;N � 1; ð5dÞ

where Wðx; tÞ; Mðx; tÞ and V ðx; tÞ denote the slope, bending moment and shear force, respectively.
An exact solution of this problem is not, in general, possible. An approximate solution can be
obtained by expanding the unknown function wðx; tÞ in a series of the beam eigenfunctions.

2.2. Eigenvalues and eigenfunctions of the damaged beam

The eigenvalues or and eigenfunctions jrðxÞ of the damaged beam are calculated through the
Transfer Matrix Method. This approach, first introduced by Pestel and Leckie [30], is still an
attractive tool for the solution of the eigenvalue problem for one-dimensional systems with non-
uniform mechanical properties. Following this approach, for the ith segment of the given
Euler–Bernoulli beam (Fig. 2a), the relations between the state at the right- and left-end can
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be written as [30]

�wR
i

WR
i

MR
i

VR
i

2
66664

3
77775 ¼

t0ðli; gÞ �t1ðli; gÞ �
t2ðli; gÞ

EI
�

t3ðli; gÞ
EI

g4t3ðli; gÞ t0ðli; gÞ �
t1ðli; gÞ

EI

t2ðli; gÞ
EI

�EIg4t2ðli; gÞ EIg4t3ðli; gÞ t0ðli; gÞ t1ðli; gÞ

EIg4t1ðli; gÞ EIg4t2ðli; gÞ �g4t3ðli; gÞ t0ðli; gÞ

2
66666664

3
77777775

�wL
i

WL
i

ML
i

VL
i

2
66664

3
77775; ð6aÞ

or in compact matrix form

zR
i ¼ Uiz

L
i : ð6bÞ

In Eqs. (6) Ui is the so-called transfer matrix, g4 ¼ o2r=EI ; and t0ðx; gÞ; t1ðx; gÞ; t2ðx; gÞ and t3ðx; gÞ
are transcendental functions reported in the Appendix. It is worth noting that in Refs. [28,29], a
lumped-mass transfer matrix is used; however, when the number of segments (damaged sections)
is relatively small, the lumped-mass model can introduce a significant approximation; unless the
undamaged segments are also divided into smaller ones [28,29]. The latter approach is certainly
possible but it requires additional computational efforts that can be avoided using the distributed
mass transfer matrix.
Using the notation just introduced, the interior compatibility and equilibrium equations (5) are

written as (Fig. 2b)

zL
i ¼ Ciz

R
i�1 for i ¼ 2; 3;y;N � 1; ð7aÞ
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Fig. 2. Beam element: end displacements and forces (a), interior compatibility relations (b).

C. Bilello, L.A. Bergman / Journal of Sound and Vibration 274 (2004) 567–582 571



where Ci is a 4� 4 matrix given by

Ci ¼

1 0 0 0

0 1 ci�1 0

0 0 1 0

0 0 0 1

2
6664

3
7775: ð7bÞ

Thus, starting from the right-end of the beam, all segments are reconnected together so that the
following relationship holds:

zN ¼ zR
N ¼ UNCNUN�1CN�1yC1U1z

L
1 ¼ AðoÞz0: ð8Þ

Finally, taking into account the proper boundary conditions, one obtains

#AðoÞ#z0 ¼ 0; ð9Þ

where #AðoÞ is 2� 2 reduced matrix. The eigenvalues or are the roots of the transcendental
equation

det½ #AðoÞ� ¼ 0: ð10Þ

Once the eigenvalues have been obtained using any of a number of root-finder algorithms, the
beam eigenfunctions, together with their derivatives up to the third order, can be calculated
directly from Eqs. (8) and (9). Using Eqs. (7) and the proper boundary conditions, it can be easily
shown that the orthonormality relationships for this case are [31–33]

XN

i¼1

Z li

0

jisðxiÞrjirðxiÞ dxi ¼ dsr; ð11aÞ

XN

i¼1

Z li

0

jisðxiÞEIjIV
ir ðxiÞ dxi ¼ o2

sdsr for s; r ¼ 1; 2;y;N; ð11bÞ

where dsr is the Kronecker delta.

2.3. Dynamic response

The unknown deflection wðx; tÞ is expanded in a series of the beam eigenfunctions as

wðxi; tÞD
Xn

r¼1

jirðxiÞqrðtÞ for i ¼ 1; 2;y;N; ð12Þ

in which the approximation is due to the series truncation, and the qrðtÞ are unknown time
coefficients to be calculated. Using Eqs. (12) and (4) in Eq. (3), the beam–moving mass interaction
force is rewritten as (with explicit time omitted)

fiðtÞ ¼ m g �
Xn

r¼1

jirðxiÞ .qr þ 2’xj0
irðxiÞ ’qr þ ½’x2j00

irðxiÞ þ .xj0
irðxiÞ�qr

( )
; ð13Þ

where the prime denotes differentiation with respect to x:

ARTICLE IN PRESS

C. Bilello, L.A. Bergman / Journal of Sound and Vibration 274 (2004) 567–582572



Operating on Eq. (1) by
R li
0 jisðxiÞ½	� dxi; summing over the N segments, and taking into account

the orthonormality relationships (11) yields

.qsðtÞ þ o2
s qsðtÞ ¼ FsðtÞ for s ¼ 1; 2;y; n; ð14Þ

where

FsðtÞ ¼
XN

i¼1

Z li

0

jisðxiÞfiðtÞW½xiðtÞ; 0; li�d½xi � xiðtÞ� dxi ¼
XN

i¼1

jis½xiðtÞ� fiðtÞW½xiðtÞ; 0; li�: ð15Þ

The right-hand of Eqs. (14) depends on the functions fiðtÞ (Eq. (15)) which, in turn, depend on
the coefficients qrðtÞ (Eq. (13)); it is clear, then, that Eqs. (14) are a set of coupled second order
linear differential equations. However, within all the terms of the summation in Eq. (15), only one
will be different from zero, i.e., the one for which W½xiðtÞ; 0; li� ¼ 1: Thus, to calculate FsðtÞ at any
time t; one must scan the entire beam to find out which is the loaded segment.
In order to simplify the program implementation and allow for a more succinct presentation of

the equations involved, introduce the functions

fr;pðxÞ ¼
XN

i¼1

jðpÞ
ir ðx � Li�1ÞWðx;Li�1;LiÞ for r ¼ 1; 2;y; n; ð16Þ

where Li ¼
Pi

k¼1 lk and L0 ¼ 0: These will be called computational eigenfunctions. Note that
fr;pðxÞafðpÞ

r ðxÞ:
This approach is similar to the one used in Pesterev et al. [34] to study the dynamic response of

a beam traversed by a stream of oscillators.
Substituting Eq. (13) into Eq. (15) and following notation (16) yields

FsðtÞ ¼ mfs;0½xðtÞ� g �
Xn

r¼1

fr;0½xðtÞ� .qr þ 2’xfr;1½xðtÞ� ’qr þ f’x2fr;2½xðtÞ� þ .xfr;1½xðtÞ�gqr

* +
: ð17Þ

Using Eq. (17) one can rewrite the set of Eqs. (14) in a compact matrix form as

MðtÞ.qðtÞ þ DðtÞ’qðtÞ þ KðtÞqðtÞ ¼ mgU0½xðtÞ�; ð18Þ

where qðtÞ is an n-dimensional vector collecting the unknowns qrðtÞ; UpðxÞ ¼
½f1;pðxÞ;f2;pðxÞ;y;fn;pðxÞ�; and the system matrices are given by

MðtÞ ¼ In þ mUT
0 ½xðtÞ�U0½xðtÞ�; ð19aÞ

DðtÞ ¼ 2m’xðtÞUT
0 ½xðtÞ�U1½xðtÞ�; ð19bÞ

KðtÞ ¼ X2 þ mUT
0 ½xðtÞ�f’x

2ðtÞU2½xðtÞ� þ .xðtÞU1½xðtÞ�g; ð19cÞ

in which In is an n-dimensional identity matrix and X2 ¼ diag½o2
1;o

2
2;y;o2

n�:
The initial conditions associated with Eq. (18) are written as

qð0Þ ¼
Z l

0

UT
0 ðxÞrw0ðxÞ dx; ’qð0Þ ¼

Z l

0

UT
0 ðxÞr ’w0ðxÞ dx: ð20a� bÞ

Due to the interaction between the beam and the mass moving on it, all of the system matrices
in Eq. (18) are time dependent. As already mentioned, in a number of previous studies, an
approximation to the interaction force has been used so that D � 0 and K � X2; however, as can
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be seen from Eqs. (19b)–(19c), these matrices depend on the speed and the acceleration of the
moving mass. It can be shown that, at high speeds or under significant acceleration, the
approximation leads to an underestimation of the structural response. Thus, for certain types of
structures (for example bridges for high-speed railways, decks for aircraft carriers), especially in
the presence of damage, the correct interaction force is necessary for accurate response prediction.
The set of equations (18) can be solved using any of a number of numerical integration schemes.

The solution procedure presented has been implemented in a Matlabs code. Once the vector qðtÞ
has been obtained, one can calculate the beam response according to the expressions

wðx; tÞ ¼ UT
0 ðxÞqðtÞ; ð21aÞ

Wðx; tÞ ¼ UT
1 ðxÞqðtÞ; ð21bÞ

Mðx; tÞ ¼ �EIUT
2 ðxÞqðtÞ; ð21cÞ

V ðx; tÞ ¼ �EIUT
3 ðxÞqðtÞ: ð21dÞ

It is worth noting that, for M � In; D � 0 and K � X2 in Eq. (18), the moving force solution is
obtained. Finally, the procedure just described can easily be extended to include the case in which
each segment of the beam differs in stiffness and mass density.

3. Damage model

The rotational spring model has been shown to lead to reasonable predictions of the static as
well as the dynamic behaviour of damaged beams [18–22,25,26]. Though it has been used mainly
to model cracked beams, experimental tests [33] have shown that, for simpler problems (beam
under a bending load, stable damage size), the spring model can also be applied to model saw-
cuts. However, it should be clearly stated that, to avoid the introduction of non-linearity in the
structural model, the saw-cut is assumed to remain open during vibration. This hypothesis has
been successively verified and confirmed by the experimental tests.
The damage configuration used for the experiments presented in the next section is shown in

Fig. 3. Damage is realized through symmetric saw-cuts with a depth equal to a: The beam

ARTICLE IN PRESS

h

2b

b

a

M

M

Fig. 3. Damage and load configuration.

C. Bilello, L.A. Bergman / Journal of Sound and Vibration 274 (2004) 567–582574



cross-section has height h and width 2b: To the authors’ knowledge, the equivalent compliance
corresponding to this damage and load configuration was not available in the literature. Thus,
following the classical approach based on linear elastic fracture mechanics, taking into account
the effective stress distribution throughout the cut depth [21,35], the compliance can be expressed
as [33]

c ¼
6p

Eh3

Z b

0
%yF2ð %yÞ d %y; %y ¼ y=b; b ¼ a=b; ð22aÞ

where

F ð %yÞ ¼
1:122� 0:561 %y � 0:205 %y2 þ 0:471 %y3 � 0:190 %y4ffiffiffiffiffiffiffiffiffiffiffi

1� %y
p : ð22bÞ

Eqs. (22) have been used for all numerical simulations herein.

4. Experimental validation

The analytical solution has been validated through experimental tests performed on a small-
scale model of a prototype bridge structure. Details of the similitude requirements set forth by a
proper dimensional analysis are reported in Bilello et al. [36]. It is remarkable that, under
simplified assumptions (Euler–Bernoulli beam model), both static and dynamic similitude
requirements have been satisfied; attention has been paid in particular to the satisfaction of the
mass similitude, often constituting one of the main difficulties in the design of small-scale dynamic
models.
Thus, the experimental model has been designed to provide results of practical engineering

relevance.

4.1. Experimental model

The model used in the experimental investigation [33,36] consists of a 6061 T-6 aluminum beam
with dimensions 1071:5� 105:25� 6:35 mm: Two 1:25 mm diameter steel rods were glued to the
model to form a rail that is used to guide the mass moving on it (Fig. 4). The weight of the beam,
including the rail, is 19:79 N; corresponding to a linear mass density r equal to 184:7�
10�8 Ns2 mm�2: The bending stiffness, estimated from preliminary static tests, is EI ¼ 162:6�
106 N mm2:
The beam is simply supported at both ends along two pre-machined lines 10 mm from the end

edges. The left-end support is fixed while the right-end support is carried by a linear ball bearing
slide. A triangular tip is mounted on the top surface of each support, and the beam rests on it. A
thin film of machine oil is applied on the supporting lines to reduce the friction as much as
possible. Each support is connected to a rigid aluminum plate that, in turn, is bolted to a rigid
concrete block. A plywood ramp is placed next to the model for the acceleration of the moving
mass. A thin aluminum layer forms its rolling surface on which is glued the same rail as in the
model. The inclination of the surface is 60�: The ramp stands on three adjustable feet that allow
levelling with the beam. The moving mass is a 4:952 N steel disk, whose diameter and thickness
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are, respectively, 50.8 and 38:1 mm: The disk is pre-machined so that it rolls on the rail glued to
the ramp and beam.

4.2. Experimental set-up

Four optical diodes are used to measure the entrance and the exit speed of the moving disk.
They are mounted in couples, spaced 50:8 mm apart, on aluminum supports located at the two
ends of the model. The output signal from the left-end side diode is used to trigger the test.
The beam deflection is measured through a laser displacement transducer focused on a point

460 mmð7=16lÞ from the left-end support. The output signals are acquired through an A/D board
integrated with a Tektronix 2630 spectrum analyzer. No windows are applied to the signals; they
are directly stored and then processed.
The experimental model has been used for static as well as impact hammer and moving mass

tests. Four configurations have been investigated: undamaged model, damaged Level 1, damaged
Level 2, and damaged Level 3 (Table 1). The number of tests performed, for each speed range and
each model configuration, varied from 30 to 100 depending on the difficulties encountered in the
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repeatability of the experiments. The tests were labeled V1–V8 to distinguish between the eight
entrance speeds.
The average and standard deviation of the entrance speeds and decelerations are reported in

Table 2. It is worth noting that the disk deceleration is reasonably small. The speed range goes
from vE3 km=h (vE23 km=h in the prototype scale) to a maximum of vE7:6 km=h (vE60 km=h
in the prototype scale). Larger values could not be obtained without risking damage to the
experimental set-up. Nevertheless, this range is sufficient to represent realistic vehicle speeds.

4.3. Results

Preliminary static tests have been performed to validate the damage model. The results of these
tests are reported in Table 3 in terms of identified damage. Good agreement can be observed,
confirming the validity of the damage model. These identified values of damage extent (rotational
spring compliance) have been used in the successive numerical analysis.
In Table 4 the first six theoretical and experimental natural frequencies (obtained from impact

hammer tests) are compared. Note that, for the model configurations Levels 1 and 2, damage is
located in the vicinity of a node of the third mode shape ð5:33=16lÞ; thus, the corresponding
natural frequency is nearly unchanged. The theoretical results agree very well with the
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Table 1

Damaged model configurations

Notation Damage location Damage extent b ¼ a=b Structural model

Level 1 6=16l 0.3 1 c1 2

Level 2 6=16l 0.6 1 c1 2

Level 3 ¼ Level 2þ 12=16l 0.6 c1 c21 2 3

Table 2

Averages and standard deviations of the disk entrance speeds and decelerations

Test Experimental model Prototype structure Exp. and prot.

E½v� (km/h) s½v� (km/h) E½v� (km/h) s½v� (km/h) E½a� ðm=s2Þ s½a� ðm=s2Þ

V1 3.06 0.05 23.10 0.37 �0.07 0.012

V2 4.12 0.08 31.08 0.59 �0.10 0.022

V3 4.63 0.06 34.93 0.48 �0.10 0.025

V4 5.18 0.07 39.11 0.56 �0.12 0.033

V5 5.72 0.09 43.16 0.65 �0.14 0.046

V6 6.35 0.09 47.92 0.65 �0.16 0.052

V7 6.92 0.10 52.25 0.78 �0.17 0.075

V8 7.59 0.13 57.31 1.01 �0.17 0.099
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experimental ones. The maximum absolute error is equal to 1.726% (f6 for damage Level 2) while
the maximum difference between the undamaged and damaged measured fundamental
frequencies is equal to 4.52%.
Some results of the moving mass tests are reported in Fig. 5. The theoretical solution is

compared with the average measured one. It has been observed that the experimental response is
basically due only to the first mode; thus, a digital Butterworth low-pass filter with a cut-off
frequency fc ¼ 30 Hz has been applied to the data to remove unwanted high-frequency content
which does not affect the maximum response. In the light of this consideration, the theoretical
response has been calculated retaining only the first term of the series expansion (12).
The experimental results agree very well with the theoretical ones in terms of trend and

maximum deflection (Table 5). In general the experimental response is larger than the calculated
one and, after the peak, it shows higher response than the theoretical one. This may be caused by
out-of-plane oscillations of the moving disk that, in turn, can be due to rolling surface
irregularities or small deviations of the rail-guide from a straight line. The maximum absolute
error between theoretical and the experimental results is 5.32%, while the maximum difference
between the damaged and undamaged measured deflection is 11.37% (damage level 3 V6).
It should be noted that the deflection increases with damage level but not always with the

moving disk’s speed (for the experimental as well as the theoretical data); moreover, the
percentages of variation in the beam response to the moving mass are larger than those induced in
the beam dynamic parameters. Thus, a higher structural sensitivity is observed under the effect of
a moving interacting load.

ARTICLE IN PRESS

Table 3

Comparison between experimental and identified damage extents

Damage Damage extent

configuration b ¼ a=b

Effective Identified

Level 1 0.3 0.287

Level 2 0.6 0.562

Level 3 ¼ Level 2þ 0.6 0.592

Table 4

Comparison between theoretical and experimental frequencies (Hz)

Undamaged Damaged Level 1 Damaged Level 2 Damaged Level 3

Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp.

f1 13.322 13.507 13.231 13.233 12.963 13.007 12.743 12.896

f2 53.291 52.965 53.078 52.560 52.478 52.147 50.623 50.840

f3 119.90 118.41 119.76 118.44 119.36 117.87 117.49 116.53

f4 213.16 210.58 211.48 209.60 206.97 205.54 206.95 205.17

f5 333.07 334.41 332.68 330.99 331.68 328.34 325.82 324.85

f6 479.62 479.60 477.73 471.60 472.68 464.52 459.71 453.98
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Fig. 5. (a) Theoretical (solid line) and experimental (dashed line) beam deflection versus crossing time for different

model configurations at section x ¼ 7=16l: entrance speed V1. (b) Theoretical (solid line) and experimental (dashed line)

beam deflection versus crossing time for different model configurations at section x ¼ 7=16l: entrance speed V5.

(c) Theoretical (solid line) and experimental (dashed line) beam deflection versus crossing time for different model

configurations at section x ¼ 7=16l: entrance speed V8.

Table 5

Comparison between maximum theoretical and experimental deflection (mm)

Undamaged Damaged Level 1 Damaged Level 2 Damaged Level 3

Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp.

V1 0.729 0.747 0.730 0.746 0.764 0.777 0.784 0.799

V2 0.726 0.756 0.738 0.763 0.773 0.801 0.783 0.787

V3 0.730 0.736 0.741 0.737 0.779 0.791 0.799 0.797

V4 0.729 0.770 0.742 0.767 0.775 0.814 0.790 0.796

V5 0.736 0.739 0.747 0.751 0.783 0.794 0.802 0.775

V6 0.743 0.712 0.754 0.733 0.788 0.764 0.806 0.793

V7 0.732 0.743 0.742 0.747 0.789 0.812 0.808 0.801

V8 0.749 0.787 0.761 0.779 0.804 0.832 0.821 0.821
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Finally, it should be noted that these experimental observations can be directly extended,
through proper scale factors [36], to the prototype structure.

5. Conclusions

A procedure for the analysis of damaged Euler–Bernoulli beams under a moving mass, with an
arbitrary number of damaged sections and generic boundary conditions, is presented. The
analytical solution is based on the series expansion of the unknown deflection in the basis of the
beam eigenfunctions; the latter properly account for the presence of internal rotational springs
representing damaged sections.
Taking into account the convective terms of the beam–moving mass interaction force leads to a

set of second order linear differential equations with time varying coefficients (mass, damping and
stiffness) which governs the given problem. Computational eigenfunctions are introduced for a
concise formulation of the problem and to accommodate computer implementation.
The analytical solution is validated through experimental tests on a small-scale model designed

to satisfy both static and dynamic similitude with a prototype bridge. It is shown that
experimental results are in good agreement with theoretical predictions. The experimental
response often appears to be larger than the calculated one.
Moreover, it is observed that the presence of damage results in larger perturbations (in

percentage) to the dynamic response to a moving load rather than to the dynamic properties of the
damaged element itself. Thus, an increase in structural damage sensitivity is noticed under the
effect of a moving interacting load.
Since experimental tests are performed on a scaled model of a bridge prototype structure, the

experimental results assume practical engineering relevance in light of the potential developments
in the field of structural health monitoring and damage identification in bridge structures.
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Appendix

The transcendental functions used for the definition of the transfer matrix Ui in Eqs. (6) are
given by

t0ðx; gÞ ¼
1

2
ðcos gx þ cosh gxÞ; ðA:1aÞ

t1ðx; gÞ ¼
1

2g
ðsin gx þ sinh gxÞ; ðA:1bÞ
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t2ðx; gÞ ¼
1

2g2
ðcos gx � cosh gxÞ; ðA:1cÞ

t3ðx; gÞ ¼
1

2g3
ðsin gx � sinh gxÞ: ðA:1dÞ
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